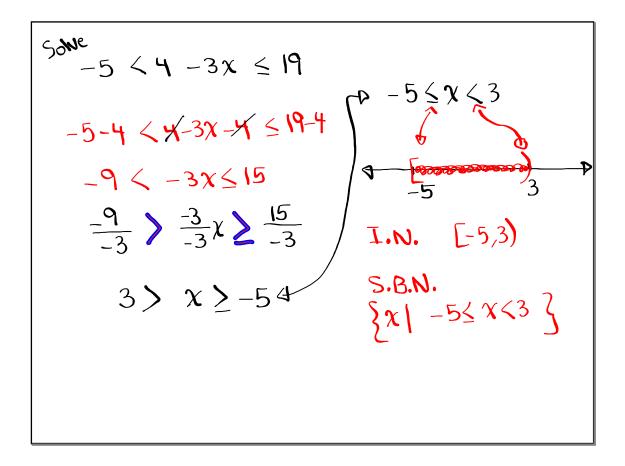


5)
$$(5 \cdot g)(x) = 5(x) \cdot g(x)$$

 $= (x-2)(x^{2}+2x+4)$
FOIL
6) $(3/5)(x) = x^{3} + 2x^{2} + 4x - 2x^{2} + 4x - 8$
 $= \frac{9(x)}{5(x)}$; $5(x) \pm 0$
 $= \frac{x^{2}+2x+4}{x-2}$; $x-2\pm 0$
 $x \pm 2$

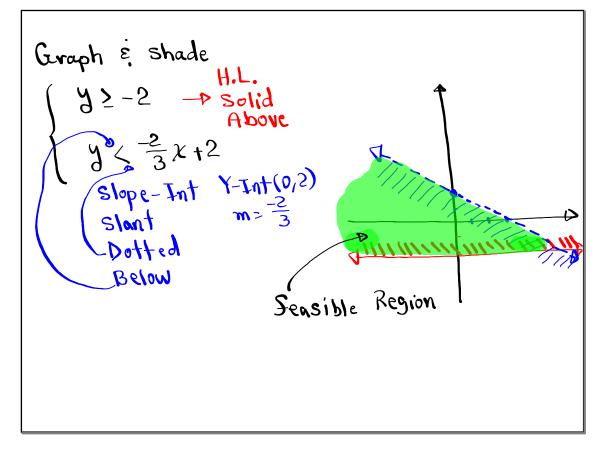

Consider

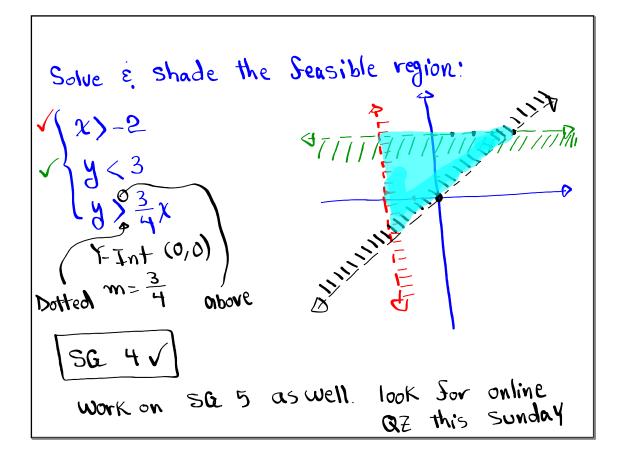
$$\int \frac{1}{x-2} + \frac{15}{x} \times 0 \qquad \text{find} \qquad 15(-2) = \frac{1}{-2-2} = \frac{1}{-4} = \frac{1}{4} = \frac{$$

Г

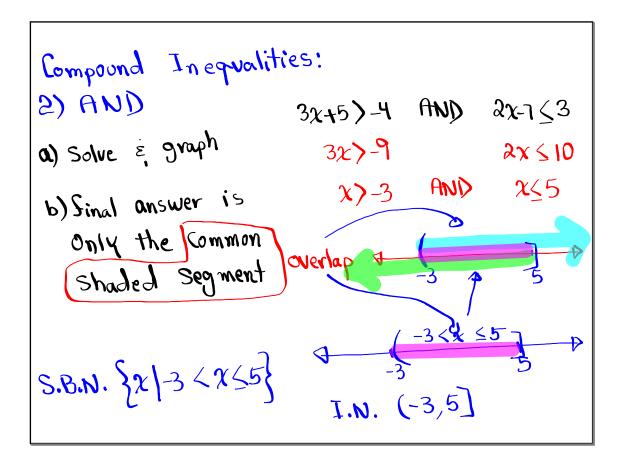
$$\begin{array}{l} A = \left\{ 1, 2, 3, 4, 5 \right\} \\ B = \left\{ 5, 6, 7, 8, 9, 10 \right\} \\ \hline Sind \\ 1) A \cup B = 2 A \cap B = \\ \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} & \left\{ 5 \right\} \\ = \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 90 \right\} \\ A = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ = \left\{ 2, 4, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 2, 4, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 2, 4, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9\right\} = \left\{ 1, 2, 3, 5, 6, 7, 8, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 9, 90 \right\} \\ P = \left\{ 1, 2, 3, 4, 5, 5, 7, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 90 \right\} \\ P = \left\{ 1, 10, 2, 6, 8, 3, 5, 7, 90 \right\} \\ P = \left\{ 1, 10, 2, 10, 2, 10, 2, 10, 2, 10, 2, 10 \right\} \\ P = \left\{ 1, 10, 2,$$

Solve
$$-6 < 22 - 4 < 20$$
 Hint: Isolate
 $-6 + 4 < 22 - 4 + 4 \leq 20 + 4$ x in the
 $-2 < 22 < 24$ middle.
 $-\frac{2}{2} < \frac{2}{2} \times \leq 24$ $-1 < 1 < 12$
Graph $\sqrt{22 \times 24}$ $\sqrt{2} = 1 < 1 < 12$
I.N. $(-1, 12)$ S.B.N. $[2x] - 1 < 1 < 12$




Sind the domain of
$$S(x) = \frac{\chi}{\chi^2 - 36}$$
.
All Reals except 16 $\chi^2 - 36 \neq 0$
 $\chi^2 + 36$
 $\chi^2 + 36$
 $\chi = \pm 36$
 $\chi = \pm 16$
I.N. $(-\infty, -6) \cup (-6, 6) \cup (6, \infty)$
S.B.N. $\{\chi \mid \chi \neq \pm 6\}$

Caraphing inequalities in two-variables:


$$y < mx + b$$
 $y > mx + b$ Dotted shart
 $y \le mx + b$ $y \ge mx + b$ Solid
 $y \ge mx +$

Graph & shade -4y 2-3x +8 32 -4y ≥ 8 $\frac{-4}{-4} \frac{3}{4} \frac{\sqrt{-3}}{-4} \chi + \frac{8}{-4}$ write in Slope-Int. Form $y^{3} < \frac{3}{4}\chi - 2$ $m = \frac{3}{4}$, Y-Int (0,-2) Solid line, Shade below

Compound Inequalities: 3x-2<7 OR 3x+5>25N OR 32<9 a) Solve & graph 2x>20 2>10 $\chi\langle 3$ b) Sinal answer is all Shaded -00 Segments I.N. (-00,3) U [10,00) S.B.N. 32/ 2<3 OR 22107

Solve:

$$2(x-1)+3 < 13$$
 OR $ax - 8 \le 5x + 7$
 $ax - 2 + 3 < 13$ $ax - 5x \le 7 + 8$
 $2x + 1 < 13$ $-3x \le 15$
 $2x < 12$ $\frac{-3}{-3}x \ge \frac{15}{-3}$
 $x < 6$ OR $x \ge -5$
 $x = -5$

Solwe

$$\frac{1}{2}\chi - \frac{1}{4} < -8$$

$$AND; \quad \frac{2}{3}\chi + \frac{1}{2} \geq \frac{5}{6}$$

$$LGD = 6$$

$$LGD = 6$$

$$4 \cdot \frac{1}{2}\chi - 4 \cdot \frac{1}{4} < 4(-8)$$

$$2\chi - 1 < -32$$

$$4\chi + 3 \geq 5$$

$$2\chi < -31$$

$$\chi < -\frac{31}{2}$$

$$\chi < -\frac{31}{2}$$

$$\chi < \frac{2}{4}$$

$$\chi < \frac{2}{2}$$

$$\chi < -15.5$$

$$X \geq \frac{1}{2}$$

$$\chi \geq 15$$
NO Overlap = NO Solution
$$VC = Mathv$$

$$SL = v$$
office hours

1) Sactor
$$\chi^{2} - 6\chi + 8 = (\chi - 2)(\chi - 4)$$

2) Sactor $\chi^{2} - 16 =$
 $-\gamma \chi^{2} - 4^{2} = (\chi - 4)(\chi + 4)$
 $-\gamma A^{2} - B^{2} = (A + B)(A - B)$
3) Simplify $\frac{\chi^{2} - 6\chi + 8}{\chi^{2} - 16} = \frac{(\chi - 2)(\chi - 4)}{(\chi - 4)(\chi + 4)}$
 $= \frac{\chi - 2}{\chi + 4}$

4) Simplify

$$\frac{\chi^{2} + 8\chi + 15}{\chi^{2} - 25} \div \frac{\chi^{2} - 9}{\chi^{2} - 8\chi + 15}$$

$$= \frac{\chi^{2} + 8\chi + 15}{\chi^{2} - 25} \cdot \frac{\chi^{2} - 8\chi + 15}{\chi^{2} - 9}$$

$$= \frac{(\chi + 5)(\chi + 3)}{(\chi + 5)(\chi - 5)} \cdot \frac{(\chi - 5)(\chi - 3)}{(\chi - 3)(\chi + 3)}$$

$$= \frac{(\chi + 5)(\chi - 5)}{(\chi - 5)} \cdot \frac{(\chi - 3)(\chi + 3)}{(\chi - 3)(\chi + 3)}$$